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Time Consistent Surface Mapping for Deformable
Object Shape Control

Ignacio Cuiral-Zueco and Gonzalo López-Nicolás

Abstract—Shape control involves deforming objects to achieve
a desired shape. One of the main challenges of this task is to
define a suitable control reference, especially when 3D objects
that lack distinctive visual texture and geometric features are
involved. This paper addresses the problem of generating a
suitable shape control reference using surface maps for 3D
texture-less objects. The proposed surface mapping method is
based on functional maps and ensures time consistency with
robustness to non-isometries. Our time consistent method is
validated within a shape control strategy, where local exponential
stability analysis is provided. The effectiveness of the framework
is illustrated through simulations and experiments.

Note to Practitioners—We present a method for shape compar-
ison to analyse the geometric similarities between the shape of
an object and a desired target shape. The goal is to generate a
point map between both surfaces so that, with the use of robots
that grasp the object, a control strategy can deform the object
towards the desired shape. The point map we compute, while
adapting to the changing shape of the deforming object, remains
stable enough to enable the shape control task. This can be of use
for the automation of processes that involve shape control (e.g.,
object packaging, moulding, etc.). Our proposed shape control
framework combines computer graphics, computer vision, and
automation techniques to create a system that is well-suited for
industrial setups equipped with commonly used range sensors like
RGB-D cameras. Regarding the experiments presented in this
paper, controlled lighting conditions are recommendable in order
to perform the colour-based object segmentation (e.g. avoidance
of abrupt light variations, uniform illumination). Automating the
grasping process is not within the scope of this paper, therefore,
in each experiment we manually defined the object grasping
points according to the shape control task involved. The proposed
framework has the potential to increase productivity, reduce
costs and, improve safety in hazardous tasks by automating the
manipulation of 3D objects that lack distinctive visual texture
and geometric features.

Index Terms—Shape control, Robot vision systems, Multiple
manipulators, Deformable object manipulation.

I. INTRODUCTION

Robot-based deformable object manipulation is present in

a variety of tasks (e.g., deformable object transportation [1],

[2], linear object manipulation [3], cable untangling [4], object

cutting [5], etc.). These tasks may involve different types of

deformable objects which, within the field of robotics, can

be classified according to several criteria [6]–[8]. Our goal is
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to achieve 3D shape control by using robots to manipulate

deformable objects into acquiring a desired target shape [9].

At a high level of abstraction, the notion of target shape

refers to the shape we want the object to achieve. However,

generating a mathematically grounded definition of shape error

that covers a broad range of shape control cases is challenging,

specially for 3D texture-less objects that present symmetries or

lack geometric distinctive features. We propose a shape error

formalization that adapts to deformations experienced by the

object and remains temporally consistent, and thus constitutes

a proper shape control reference.

Our approach, illustrated in Fig. 1, involves the use of a

3D sensor (e.g., an RGB-D camera) to perceive the object

and generate a mesh of its visible surface. Our proposed time-

consistent surface mapping allows for the comparison of the

current shape with the reference (target) shape, and generates a

surface map that enables us to generate an input reference for

the shape control strategy. The shape control strategy generates

6 degrees of freedom (DoF) actions for each robot involved

in the manipulation of the object, thus deforming it towards

the desired shape.

A. Related work in shape control

Regarding the shape control literature [10], there is a variety

of approaches and control reference definitions. Some methods

define their control reference with the use of feature points on

the object’s surface (e.g. [11]–[15]). Method in [14] defines

its error reference as the alignment of a set of (provided)

points, whereas [13] defines the error reference using the nodes

of a planar deformation mesh that is updated by means of

visual features. The deformation planning approach in [15]

uses visual markers (laser-reflective features) to determine the

object’s shape. Other methods focus on deformable object

transport, this is the case of [1] which uses a rigid Procrustes

optimization to define a homogeneous contour point matching

between planar shapes. Some approaches like [12] focus

on isometric deformations of planar objects with monocular

perception by using few feature points and a Shape-from-

Template analysis. Methods like [16] tackle both isometric

and elastic deformations of planar objects by defining a

contour mapping based on a multiscale Fast Marching Method.

Strategies like [17]–[19] tackle the manipulation of deformable

objects, defining the control strategy by means of (2D) contour

moments. However, they are limited to the analysis of the

1D contour (embedded in 2D or 3D) of the object’s visible

silhouette. Similarly, deformable linear object (DLOs) ma-

nipulation methods (e.g., approach in [20]) typically define
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Fig. 1. Overview of the proposed approach. At the top, the main objective of deforming an object into a desired shape is

illustrated with a sequence of deformation states (red mesh). A general outline of the proposed shape control framework is

shown, and our experimental setup is illustrated on the right side of the figure. A 3D sensor (e.g., an RGB-D camera), provides

the RGB-D images from which the object’s mesh is retrieved at each iteration. The current object mesh is compared to the

target mesh by means of our proposed time consistent surface mapping method. Our main contribution entails generating

surface maps that allow defining the shape control reference, thus serving as input for the shape control strategy. A 6 DoF

action is defined for each of the robots involved in the manipulation of the object.

shape references by mapping the curves (1D domains) that

represent DLOs. For example, the method in [21] matches

DLOs through B-spline representations. However, mapping 2D

surfaces (embedded in 3D) for deformable object shape control

remains a challenge.

B. Related work in surface correspondence

As this paper makes extensive use of functional maps, we

provide a specific review of the relevant computer graphics

literature. Functional maps, introduced in the shape corre-

spondence context in [22], are a robust and efficient tool for

isometric shape surface mapping. Since [22] was published,

several proposals have modified and extended the use of

functional maps for diverse and demanding challenges such as

partial mapping of shapes [23], surface-orientation preserving

correspondences [24] or vector-field transfer between surfaces

with the use of complex functional maps [25]. Other functional

map based methods focus on a coarse-to-fine shape analysis.

This is the case of [26], in which smoothed versions of the

shape, along with a Markov chain Monte Carlo initialization,

allow refining the mapping process at different levels of detail.

An interesting alternative is the ZoomOut method, proposed

in [27], where a coarse-to-fine analysis is also performed.

C. Problem motivation

Surface mapping defines a continuous function that maps

points from one surface to another, based on their geometry.

This technique is relevant in computer graphics for producing

realistic animations and effects, as it ensures that textures

accurately adapt to the shape of an object, even when the

object deforms. When applied in synthetic environments, such

as simulations and animations, maintaining mapping consis-

tency during surface deformations is straightforward, as the

positions of all mesh nodes are always known. However,

(a) Visual texture based error (b) Feature-based error

(c) Surface map based error

Fig. 2. Three different shape error criteria (a, b and c). (a)

shows a visual texture-based criterion in which, although both

shapes are the same, their visual descriptors present different

positions and lead to non-zero error. (b) shows a feature based

shape error definition that does not consider all the object’s

geometry. The descriptor (two discrete points and a segment’s

curvature) is identical in both cases and thus leads to zero

shape error even-though the shapes are different. (c) involves

a geometry based surface map that considers all the object’s

geometry and does not depend on visual texture, leading to

proper shape analysis on both comparison cases.

applying surface mapping to texture-less real-world objects

poses considerable challenges (e.g., ground-truth point po-

sitions are not known, sensor data may be noisy and in-

complete, etc.). Therefore, significant efforts are needed to

ensure mapping consistency during surface deformations in

real scenarios. We define time-consistent surface mapping as

the process of computing and updating surface maps so that

they adapt to surface deformations, specifically considering

surfaces acquired from sensor data. Thus, time consistency

expands the applicability of surface mapping to real-world

scenarios, closing the gap between synthetic models and real-

world practical applications. To name some potential appli-

cations of time-consistent surface mapping: shape control of

deformable objects in manufacturing processes (tackled in this
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paper), quality control in the food industry, object texture-

transfer in augmented reality, or surface mapping in real non-

rigid environments (e.g., laparoscopies).

A challenging goal in the context of 3D shape control is

to define a geometry based holistic shape error. We propose

defining such shape error through 3D surface maps computed

by means of functional maps (see a brief introduction to

functional maps in section II-A). Functional maps can be of

great interest in defining a reference for shape control because,

in comparison to other shape control reference definitions from

the literature, they:

• allow generating geometry based surface maps. Some shape

control methods base their shape error on visual texture

(e.g., [13]). However, even if an object presents rich visual

texture, such texture is not necessarily representative of

the object’s shape (see Fig. 2.a). Furthermore, repetitive or

symmetric visual patterns may lead to ambiguities, further

limiting texture-based methods.

• a holistic shape analysis, in which all the object’s available

geometric information is considered. Existing shape control

methods such as [11], [15], [28], [29] define their shape

error through a reduced number of features that need to

be properly defined beforehand (depending on the object’s

shape) and could lead to ambiguities (see Fig. 2.b). Thus,

such approaches are limited to the amount and variety of

available features that the object presents.

• favour isometries and seek maximising curvature resem-

blance. These two aspects lead to the minimisation of

stretching/compression and bending deformation processes.

Note that surface mapping methods from the functional maps

literature are not directly applicable to shape control, as it

constitutes a relatively different problem. We will now discuss

the difficulties and challenges that need to be addressed.

D. Contributions

The following is a summary of the challenges we have

addressed and the main contributions of the 3D shape control

framework presented in this paper.

1) We generate time-consistent functional maps along
iterations: The functional maps literature focuses on the

computation of functional maps between two specific static

shapes, whereas shape control requires the consistent compu-

tation along iterations of functional maps between an evolving

(deforming) shape and a target shape. As the object deforms

and acquires different shapes, new minima may appear in

the functional map computation process, leading to solutions

(functional maps) that may differ greatly from the initially

computed functional map.

2) We compute consistent surface point tracking dur-
ing deformation processes: Time consistent functional maps

alone are not sufficient for generating a proper shape control

error: a functional map based shape error would be defined

in terms of the shape’s Laplace-Beltrami basis and thus

be invariant to isometries. That is, if two different shapes

constitute an isometry, their bases are identical and thus would

lead to zero error. Therefore, it is necessary to define a point-

to-point based error, something that would be straightforward

in virtual mesh deformations (simulations) as the shape’s node

ground-truth positions are known. However, in a real setup, a

new set of the object’s 3D points is acquired in each iteration

(with varying number of points and arbitrary index/order). Our

method allows to consistently track surface points during the

deformation process and thus compute deformation Jacobians

and time-consistent point-to-point error vectors that are suit-

able for shape control.

3) Our method allows for computation times that are
suitable for industrial use: We managed to remain above

5 [Hz] in the computation of the time-consistent surface

maps. The functional maps literature prioritises fineness over

computational time; they tackle a different problem (mapping

between two static virtual surfaces) and face challenging

bench-marking in terms of accuracy. Generally, methods anal-

yse highly detailed meshes (≈ 10.000 mesh nodes), use

sophisticated shape descriptors (e.g., wave-kernel signature

[30]) and solution searching methods (e.g., MCMC initial-

ization [26]) that typically require minutes of processing to

obtain refined results. Our framework is based on one of the

fastest methods in the computer graphics literature (ZoomOut

method [27]) and, without the use of shape descriptors, we

achieve a compromise between fineness (≈ 500 mesh nodes),

computational time (≤ 0.2 [s]), and robustness.

4) Our proposed framework is robust to non-isometries
and problems arising from real data: Surface mapping meth-

ods in the functional maps literature typically analyse mesh

datasets with fine and smooth meshes in which target shapes

constitute isometries [31], [32]. Surface mapping of large non-

isometries is still an ongoing challenge in the computer graph-

ics literature and, in this paper, we do not solve it in a formal

and general manner. However, we do achieve robustness of

our system to non-isometric deformations. Regarding real data

derived problems, a realistic industrial set-up will most likely

involve the use of affordable 3D sensors, such as RGB-D

cameras, that provide noisy and varying/incomplete data.

Aspects like object occlusions (e.g., object self-occlusions),

unsuitable sensor position or sensor’s limitations (reflections,

bad illumination, etc.) can cause sudden variations on the

mesh. Our framework is robust to these problems, as it

uses information from previous iterations in a coarse-to-fine

manner.

II. FUNCTIONAL MAPS

A. Functional maps: background

Functional maps are widely used to compute point-to-point

correspondences between pairs of 2D surfaces (embedded in

3D). In the computer graphics context, they were introduced

in [22] for computing point-to-point correspondences between

two surfaces (manifolds) M and N . These surfaces are defined

in the discrete setting as triangular meshes, being M the

number of nodes in M and N the number of nodes in N .

Consider now the space of all real-valued functions on surfaces

M and N , i.e. F(M,R) and F(N ,R) respectively, and

suppose we can obtain a functional TF that maps one space

onto the other:

TF : F(M,R) → F(N ,R). (1)
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This means that any real-valued function f : M → R can

be mapped to an analogous function g : N → R by applying

functional TF as follows:

g = TF (f). (2)

Recall, the objective is to obtain a point-to-point matching be-

tween M and N . Therefore, as input for (2), we are interested

in a specific kind of function f that allows us to select specific

points of surface M and find their corresponding image in

N . We denote a function that selects a point xs ∈ M as:

fs(x) = 1 if x = xs and fs(x) = 0 otherwise. After applying

(2), we can obtain the corresponding selector function for N ,

i.e. gs, which provides us with the matched point xs ∈ N :

one just needs to find x ∈ N | gs(x) = 1 and gs(x) = 0 for

the rest of points. The main problem now is how to obtain TF

in (1).

We can consider a function f as a linear combination of

infinite basis functions {φM
i }, i.e. f =

∑∞
i aiφ

M
i . Also

consider {φN
j } as the analogous set of infinite basis functions

of g. This decomposition leads to the following definition of

TF (proposed in [22], remark 4.2):

TF (f) = TF (

∞∑
i

aiφ
M
i ) =

∞∑
j

∞∑
i

aici,jφ
N
j . (3)

The functional representation TF (or functional map, for now

on) can be represented in matrix form as

TF (A) = C∞A, (4)

being C∞ (with elements ci,j ∈ R) an infinite matrix and

A ∈ R
∞ the infinite vector of coefficients ai ∈ R. The goal

is to obtain a finite approximation of C∞, i.e. C, that allows

us to compute a point-to-point map T : M → N between our

two shapes’ surfaces M and N .

Before computing C and T we need to choose a basis

{φM
i } and {φN

j }. A specially convenient basis is provided by

the Laplace-Beltrami eigenfunctions, as they present proper

compactness (i.e. with a few components they provide a good

approximation of functions) and stability under deformation

processes (i.e. they are invariant to isometries).

Given the triangle mesh representation of surfaces M and

N , a common approach in the literature is to approximate

the Laplace-Beltrami eigenfunctions with the eigenvectors

of the meshes’ discrete Laplacian matrices (obtained with

cotangent weight criterion [33]). If we discard the zero-

valued eigenvalue, the semi-definite Laplacian matrix LM ∈
R

M×M gives a finite set of non-zero eigenvectors ΦM
I =

[φM
1 , .., φM

i , ..., φM
I ], where I ∈ N, I < M denotes the

number of eigenvectors (omitting the null eigenvector) that, in

column form, constitute matrix ΦM
I ∈ R

M×I . Analogously,

eigenvectors of LN ∈ R
N×N yields matrix ΦN

J ∈ R
N×J ,

where J ∈ N, J < N . Both bases, ΦM
I ,ΦN

J , present columns

(eigenvectors) ordered by increasing associated eigenvalues.

As described above, given a functional map C between two

surfaces M and N , a point-to-point map between the surfaces

can be retrieved. Once bases ΦM
I and ΦN

J are obtained,

the computation of C is tackled in different ways. Most ap-

proaches involve optimisation processes that make use of mesh

feature descriptors such as SHOT [34] or WKS [30] (projected

on the basis functions) combined with regularisation terms or

stochastic analysis. Among all the current approaches we focus

on [27] for two main reasons: it is significantly faster (in the

order of tenths of a second instead of minutes on standard

computers) and thus fits the closed-loop control paradigm;

and it performs a coarse-to-fine optimisation process in the

frequency domain that allows to prioritise coarse geometry of

the shape over the fine details.

B. The ZoomOut method

Note that, as basis’ eigenvalues increase, their associated

eigenvectors represent a higher frequency component of the

basis. Given low values of I or J , the lower frequency

components of the basis are prioritised. This fact is well

exploited in ZoomOut [27] where both bases (ΦM
I and ΦN

J )

are enlarged iteratively. This method iteratively computes the

point-to-point map T : M → N in a logical M × N matrix

form Π, being:

Πm,n =

{
1 if T (xm) = yn,

0 otherwise.
(5)

xm ∈ M and yn ∈ N in (5) refer to mesh points

with indices m,n ∈ N. We now introduce dependence of

C on variable I to refer to the I × I finite approximation

of C∞ in (4), that is C(I) ∈ R
I×I . The ZoomOut method

refines functional maps C(I) through iterative increments of

I , resulting in progressively larger and finer functional maps

(see Fig. 3). The method seeks to force orthonormality of

sub-matrices C(I) and thus ensuring locally area-preserving

correspondences. It does so by minimising

min

Π

Imax∑
I

1

I
‖Cᵀ(I)C(I)− II×I‖2F , (6)

s.t. C(I) = (ΦM
I )

+
ΠΦN

I (7)

where F indicates the Frobenius norm, II×I the identity

matrix of size I and ()+ denotes pseudo-inverse (note that

M � I). The constraint in (6) ensures sub-matrices of

C(Imax) (i.e. C(I)) arise from a point-to-point map Π.

ZoomOut [27] proposes splitting this optimisation problem

into two sub-problems solved iteratively. That is, given Imax

the maximum eigenvalue index we are considering, and the

functional map initialisation C(Iinitial) = IIinitial×Iinitial

with 0 < Iinitial < Imax ≤ min(M,N), compute iteratively:

Π = argmin

Π

∥∥ΠΦN
I Cᵀ(I)− ΦM

I

∥∥2
F

(8)

C(I + 1) = (ΦM
I+1)

ᵀAMΠΦN
I+1 (9)

for I = Iinitial, . . . , Imax − 1. Equation (8) seeks to

minimise the cost presented in (6), and (9) presents the relaxed

form of the constraint in (7) as it penalises the image of

ΠΦN
I Cᵀ(I) lying outside the span of ΦM

I (i.e. it seeks to

ensure that map C(I), given a proper point-to-point map Π,
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Fig. 3. Illustration of the ZoomOut method where size-

increasing functional maps C(I) are computed for a reference

shape N and a target shape M. The iteration process begins

with a map C(Iinitial) of size Iinitial × Iinitial which then

evolves (is refined) and grows in size until becoming C(Imax)
of size Imax × Imax. The surface map is represented by the

colour map on the object’s surface.

maps one eigenbasis to the other as ΦM
I C(I) = ΠΦN

I ). The

orthonormality of ΦM
I with respect to its inner product with

the mesh’s lumped area matrix AM ∈ R
M×M (AM is a

diagonal matrix containing the sum of the areas associated to

node m and its neighbours) allows substituting (ΦM
I )+ for

(ΦM
I )ᵀAM in (9). Note that as values of I increase in (9),

more columns are added to ΦM
I and ΦN

I and larger (and thus

finer) functional maps C(I) are obtained. Once the iterative

process finishes, (8) provides a point-to-point map Π between

both surfaces. See [27] for more detailed explanations of the

method.

III. TIME CONSISTENT AND NON-ISOMETRY ROBUST

SURFACE MAPPING

So far, we discussed surface maps Π between two static

shapes M and N . Our goal now is to provide maps through

time iterations k ∈ N between an evolving current shape

M(k) and a target shape N . Such maps can then be used

to deform M(k) towards N in a shape control strategy like

the one introduced in sect. IV. For effective shape control,

as the object deforms, we want functional maps C(Imax, k)
and point-to-point maps Π(k) to evolve smoothly and thus

be time consistent (note dependence on k has been intro-

duced). We identified three conditions to achieve consistency

and smooth map evolution in real-world applications with

deformable objects: (i) Time consistency of basis ΦM
Imax

(k)
(Section III-B), (ii) Time consistency of functional maps
C(Imax, k) (Section III-C), and (iii) Robustness to non-
isometries (Section III-D). To address these challenges, we

propose a solution developed in the following sections and

embodied in a compact and practical form in Algorithm 1. Our

proposed solution yields a time-consistent surface map Π(k)
that, when applied to a set of points Y ∈ R

N×3 from the

target shape N , generates the set of points Π(k)Y ∈ R
M×3

that are mapped to points X ∈ R
M×3 from the current shape

M. These point maps can be incorporated into a shape control

scheme, as explained in Section IV.

Algorithm 1 Time consistent and non-isometry robust method.

Require: k > 0 � Current time iteration.
Require: 0 < Iinitial ≤ Iupdate < Imax ≤ min(M,N).

1: if k = 1 then
2: I = Iinitial

3: Initialise C(I, k = 1) � III-A
4: else
5: Time consistent update of ΦM

Imax
(k) � III-B

6: I = Iupdate
7: C(I, k) = C(Iupdate, k − 1) � III-C
8: J = Iupdate
9: end if

10: while I ≤ Imax − 1 do

11: Π(k) = argmin
Π(k)

∥
∥Π(k)ΦN

J Cᵀ(I, k)− ΦM
I (k)

∥
∥
2

F

12: I = I + 1

13: J = max
r

{r | λN
r ≤ λM

I (k)ρ(k)} � III-D

14: C(I, k) = (ΦM
I (k))ᵀAM(k)Π(k)ΦN

J (k)
15: end while
16: return Π(k),C(Imax, k)

A. Initialization of C(I, k = 1)

As previously stated, certain shape characteristics, such as

symmetries, may result in numerous solutions for functional

maps C(I, k) that present similar minima. We now tackle the

problem of defining an initial solution that is appropriate for a

shape control application. One may arbitrarily define an initial

solution C(I, k = 1) = II×I , like ZoomOut does. However,

this initialization is not appropriate for shape control given

two main reasons:

1) Functional maps do not straightforwardly differentiate

between surface orientations and inversions. An initialization

C(I, k = 1) = II×I may result in a solution that requires

inverting object surface, thus leading to the infeasibility of the

control task and to object collapse. Methods in the functional

map literature such as [24] can deal with this limitation as

they also consider the surface orientation through its normals.

2) Even when considering surface orientation, two mapping

solutions that share similar minima might lead to very different

control action requirements (e.g., unnecessarily rotating a sym-

metric object 180º around its symmetry axis). It is desirable to

obtain the mapping solution that leads to the least Euclidean

distance error. Methods such as [26] consider extrinsic error

in their initialization, thus achieving more desirable solutions

for our particular application of shape control.

Initialization is not required to be as fast as in-loop pro-

cesses, and a more time-costly method such as [24] or [26]

can be applied to achieve an initial solution that can be

later updated using our proposed method. However, seeking

a more straightforward approach, in this paper we opted for

an ICP (Iterative Closest Point) and closest neighbour based

initialization of C(Iinitial, k = 1). We conduct an ICP optimi-

sation between the two sets of point coordinates Y ∈ R
N×3

(which stacks the node positions of the target mesh) and

X, thus obtaining a rigidly aligned set of point coordinates

XICP ∈ R
M×3. A closest neighbour search between XICP

and Y provides us with a point-to-point map Π(k) that allows
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to compute our initial functional map solution:

C(Iinitial, k = 1) = (ΦM
Iinitial

(k))ᵀAM(k)Π(k)ΦN
J , (10)

where the considered amount of eigenvectors J in ΦN
J (k)

is responsible for the robustness to non-isometries. The com-

putation of J will be further explained in Section III-D.

B. Time consistency of basis ΦM
Imax

and object point tracking

The time consistency of the basis ΦM
Imax

(k) is a necessary

(but not sufficient) condition for the consistency of functional

maps C(Imax, k) and point-to-point maps Π(k) across itera-

tions. Consider ΦM
Imax

(k = 1) our reference basis. Computing

new bases across iterations k > 1 using newly retrieved object

points Xret(k) ∈ R
Mret(k)×3 (Mret(k) varies with time and

is not necessarily equal to M ) results in two main issues:

• Each row in basis ΦM
Imax

(k) corresponds directly to a spe-

cific point on the object’s surface. However, variations occur

between iterations due to factors like object movement,

deformation, camera noise, and irregular sampling patterns.

These variations affect the number of retrieved points

(Mret(k) �= M ), their 3D positions, and their associated

row indexes, causing an inconsistency in the row-to-point

correspondence of ΦM
Imax

(k) across iterations. Maintaining

this consistency is essential, whether for tracking object

points (e.g., for computing a deformation Jacobian) or

for properly updating functional maps C(Imax, k) across

iterations.

• Furthermore, properly updating ΦM
Imax

(k) would require

analysing the sign of the eigenvectors that comprise the

basis, as the signs of the eigenvectors are arbitrarily defined

and can change among time iterations k.

Consequently, we need to update basis ΦM
Imax

(k) in a manner

that preserves the row-to-point correspondence and the signs

of eigenvectors across iterations.

Our approach serves a dual purpose. First, it solves the time

inconsistency of the basis ΦM
Imax

(k) by ensuring a consistent

correspondence between rows of ΦM
Imax

(k) and points on the

object’s surface. Second, it provides a time consistent vector

X(k) ∈ R
M×3, which tracks the movement of the same set of

object points (from the initial instant) over time. Through the

use of X(k) it becomes possible to compute the deformation

Jacobian of the object and to define an error vector that

remains time-consistent for shape control purposes (the control

system will be explained in more detail in Section IV).

We first introduce matrix ΠM(k) ∈ R
M×Mret(k) which,

in the fashion of Π(k), constitutes the point-map between

newly retrieved points Xret ∈ R
Mret(k)×3 and the time-

consistent tracked points from the previous iteration X(k−1).
In each iteration k > 1, ΠM(k) is initialised through a closest

neighbour search between point positions stacked in Xret(k)
and X(k − 1) ∈ R

M×3. This initialization facilitates the con-

vergence of the next iterative process towards an embedding-

coherent mapping solution in which the object moves and

deforms continuously in space. The already initialised map

ΠM(k) is updated and refined in a coarse-to-fine manner for

increasing values of I , that is for I = Iupdate, . . . , Imax − 1
we iteratively compute:

ΠM(k)=

=argmin
ΠM(k)

∥∥∥ΠM(k)ΦM
ret,I(k)(C

M(I, k))ᵀ − ΦM
I (k−1)

∥∥∥2
F
.

(11)

CM(I+1, k) = (ΦM
I+1(k−1))ᵀAM(k−1)ΠM(k)ΦM

ret,I+1(k),
(12)

being ΦM
ret,I(k) ∈ R

Mret×I , ΦM
ret,I+1(k) ∈ R

Mret×I+1 in (11)

and (12) the basis obtained from the newly retrieved set of

object points truncated to the I-th and (I + 1)-th eigenvector

respectively.

Functional map CM in (12) (with elements cMi,j (k)) maps

the previous state (time consistent) basis ΦM
Imax

(k − 1) and

the obtained basis from the newly retrieved set of points

ΦM
ret,Imax

(k). Using CM, the diagonal matrix CM
sgn(k) ∈

R
Imax×Imax is computed:

CM
sgn(k) = blkdiag({sgn(cMi,i (k))}Imax

i=1 ), (13)

being sgn() the sign operator and blkdiag() the block

diagonal matrix building operator. Matrix CM
sgn(k) contains

the sign correction that should be applied to eigenvectors in

ΦM
ret,Imax

(k) in order to be sign-consistent with the previous

state basis. Note that map ΠM(k) contains the point mapping

that allows to pick and re-order the rows of ΦM
ret,Imax

(k)

so that they are consistent with the rows of ΦM
Imax

(k − 1)
in the sense of both representing the same set of tracked

object points. Combining the row re-ordering provided by map

ΠM(k) from (11) and the sign correction provided by CM
sgn(k)

from (13) we compute a time consistent basis:

ΦM
Imax

(k) = ΠM(k)ΦM
ret,Imax

(k)CM
sgn(k). (14)

Then, also using ΠM(k) from (11), the positions of the

object tracked points X(k) can be updated as

X(k) = ΠM(k)Xret(k). (15)

C. Time consistency of functional maps C(Imax, k)

Even if time consistency of the basis ΦM
Imax

(k) is achieved,

when shapes undergo deformations or present symmetries,

new or multiple similar minima might arise in the compu-

tation of C(Imax, k). This can lead to significantly different

functional map solutions C(Imax, k) across iterations that, in

turn, lead to time inconsistent point-to-point maps Π(k). For

this reason, our method needs to ensure time consistency of

functional maps C(Imax, k).
To address this problem, our method exploits the fact

that slow/smooth deformations do not largely affect geometry

features presented at low frequencies. We propose taking ad-

vantage of sub-matrices from previously computed functional

maps C(Imax, k − 1) under the assumption that ΦM
I (k) ≈

ΦM
I (k − 1) for low I = Iupdate. That is, We initialise

the functional map C(Iupdate, k) of iteration k > 1 with a
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reference shape
(3D mesh)

shape at k=1

shape after
small deformation

Fig. 4. Illustration of our time consistent surface mapping

method. The first time iteration k = 1 requires to iterate from

C(Iinitial, k = 1) to C(Imax, k = 1). For k > 1 the process

begins with C(Iupdate, k), which is obtained as a sub-matrix

of C(Imax, k − 1).

matrix equal to the top-left Iupdate × Iupdate sub-matrix of

C(Imax, k − 1) (see Fig. 4). Thus, elements of C(Iupdate, k)
are:

ci,j(Iupdate, k) = ci,j(Imax, k − 1), for i, j = 1, . . . , Iupdate.
(16)

This process not only allows updating the matching in a

time-consistent manner (i.e. with time continuity), but also

reduces the computational cost in iterations k > 1 as the

number of optimisations is reduced by Iupdate−Iinitial. Using

our time-consistent basis ΦM
Imax

(k) from (14) (recall ΦM
I (k) is

ΦM
Imax

(k) truncated to the I-th column), we can iterate through

increasing values of I = Iupdate, ..., Imax − 1 to refine point-

to-point maps Π(k) and functional maps C(I, k):

Π(k) = argmin

Π(k)

∥∥Π(k)ΦN
J Cᵀ(I, k)− ΦM

I (k)
∥∥2
F
, (17)

C(I + 1, k) = (ΦM
I+1(k))

ᵀAM(k)Π(k)ΦN
J . (18)

Note that, even though we re-use data from the previous

C(Imax, k − 1) to initialise our functional map estimation in

iteration k, in (18) we allow those elements of C(Iupdate, k)
that map low frequencies (i.e. ci,j(I, k) with i, j ≤ Iupdate)

to be updated as well. Regarding the value of J in (17) and

(18), the classic refining method in [27] would be equivalent

to setting J = I . That is, truncating the current and target

shape basis to the same number of columns (see how (8)-(9)

do not require defining J). However, in the following section,

we propose defining J to increase the robustness of the method

to non-isometries.

D. Robustness to non-isometries

A challenge of real setups is that there is no guarantee

that the desired target shape constitutes an isometry of the

current shape. Our method improves robustness against non-

isometries, thus achieving adequate performance in real appli-

cations.

We will now develop on the computation of J in (17) and

(18) to increase robustness to non-isometric deformations. In

[23], a method for matching an incomplete surface (i.e. a shape

with missing parts) to its full version (i.e. the complete shape)

was presented. This problem is referred to as partial functional

correspondence. It is solved by taking advantage of the fact

that the basis of the incomplete shape generates a subset of

the basis of the complete shape. This leads to a non-square

functional map C that presents a dominant slanted diagonal.

This diagonal’s slope is proportional to the ratio of the shapes’

areas A(N )/A(M), being N the complete shape and M the

incomplete shape.

In [27], in order to solve the partial correspondence prob-

lem, they propose an update rule of the basis’ size (i.e. an

update rule for I and J) that weakly enforces C ∈ R
I×J to

be non-square and to present a slanted diagonal with a slope

proportional to A(N )/A(M). One intuition behind the slanted

diagonal slope is that the lower frequencies of the incomplete

shape begin to appear later (in higher harmonic indexes) of

the complete shape’s spectrum, and thus the slanted diagonal

compensates for that.

Our method exploits the slanted-diagonal concept from a

different perspective. The fact that the objects we want to

control deform isotropically implies that non-isometric de-

formations mainly affect the object’s geometry in a narrow

bandwidth of low frequency features. That is, if the object

stretches, it will do it uniformly and surface details will be

dragged along in a quasi-isometric manner. For this reason,

we compensate for the frequency miss-match by enforcing a

slanted diagonal with a slope

ρ(k) =
√
A(M(k))/A(N ). (19)

Note ρ in (19) is inversely proportional to the square root

of the slope of the partial correspondence problem in [23] and

[27]). We enforce the slope ρ in our functional map solution

by setting J of λN
J to:

J = max

r

{
r | λN

r ≤ λM
I (k)ρ(k)

}
, (20)

where λN
J , and respectively λM

I , are the eigenvalues associated

to eigenvectors in columns I and J of the bases. Update of

J (20) takes place between (17) and (18) and for the first

computation of (17) is initialized as J = Iupdate. The intuition

behind our update rule is that lower frequency components (i.e.

components associated to low eigenvalues λM
i ) are inversely

proportional to their periods tMi and therefore λN
j /λM

i =
tMi /tNj . We approximate the objects’ period ratio tMi /tNj
with the square root of the objects’ area ratio ρ (19) (Fig. 5).

Introducing (20) in Algorithm 1 we enhance the retrieval of

point-to-point matches in non-isometric deformation scenarios

and, in some cases, (20) can become a critical element in the

success of the method (see Fig. 6). Note that (20) is not applied

in the iterative refinement process (11)-(12). This is because
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current shape

Fig. 5. Process for choosing index J in non-isometric deforma-

tions (short beam to long beam). An initial trivial guess would

be j = I for matching harmonic i = I to harmonic j = I .

We propose using (20) so i = I, j = J with J such that

λN
J is closer to λM

I ρ (in this particular example ρ ≈ 0.82).

See how our guess (i.e. j = J) finds a better eigenvector

correspondence (eigenvectors are depicted on the shapes with

colour maps).

(a) Zoomout [27] (b) Ours (Sect.III-D) (c) Target shape

Fig. 6. Example of a current shape M (a, b) being matched

to a target shape N (c) by using the regular ZoomOut method

(a) and our non-isometry robust method (b). Since the target

shape has a significantly larger area than the current shape,

ZoomOut’s area-preserving optimization leads to inconsis-

tency, evident by the colour map’s discontinuity in the centre

of the beam (a). Our method, using a slanted C matrix,

resolves the non-isometry between shapes.

our method assumes a smooth deformation process, allowing

the shapes of consecutive object states to be safely considered

as isometries.

IV. SHAPE CONTROL APPLICATION

In this section, we validate our proposed method for time-

consistent surface mapping (presented in section III) within a

shape control framework. Laplace-based eigenbases are useful

for solving surface mapping, as they are invariant to isometries.

However, this same characteristic makes them inappropriate

for defining an error metric within the shape control context:

different configurations of the 3D embedding can share the

same intrinsic features (e.g. aspects such as concavity or

convexity may not be distinguishable). We therefore propose

defining a shape error based on extrinsic tracked point po-

sitions X(k) from (15), the target shape nodes Y, and our

computed maps Π(k). We define a shape error in matrix form

as

E(k) = X(k)−Π(k)Y, (21)

with E(k) ∈ R
M×3. Rearranging E(k) in column form, we

define the error vector e(k) ∈ R
3M :

e(k) = [eᵀ1(k), . . . , e
ᵀ
m(k), . . . , eᵀM (k)]ᵀ, (22)

being em(k) ∈ R
3 the error vector of the m-th surface point.

A. Control law

We now present the robot-based shape control law for

reducing ‖e‖ =
√
eᵀe and thus bringing a deformable object

shape closer to the desired target shape (Fig. 7). The robot

setup involves grippers g = 1, ..., G that can perform 6 degrees

of freedom actions ug = (Δtᵀg ,Δrᵀg)
ᵀ, where Δtg ∈ R

3 is

the translation increment and Δrg ∈ R
3 is the change in

orientation represented with the Rodrigues’ rotation vector.

We rearrange X(k) to define the column vector x(k) ∈ R
3M

and its variation along iterations Δx(k) = x(k) − x(k −
1), Δx(k) ∈ R

3M . If we actuate the grippers simultaneously,

we cannot estimate the contribution to Δx(k) that each

gripper generates. For this reason, we propose operating them

sequentially.

In order to design our control law, we define two

data buffers (or historic information) for each gripper.

One contains previous gripper g actions as Ug(k) =
(u1

g, ...,u
b
g, ...,u

B
g ),Ug(k) ∈ R

6×B , being b = 1, ..., B
the buffer index and B ∈ N, B ≥ 6 the buffer size.

The other data buffer contains the change in the state (i.e.

Δx) that each action ub
g has generated, i.e. ΔXg(k) =

(Δx1
g, ...,Δxb

g, ...,ΔxB
g ),ΔXg(k) ∈ R

3M×B . Grippers actu-

ate sequentially and thus buffers (note that they depend on k)

are updated cyclically, i.e. each iteration k a different gripper

actuates the system and thus its data buffer is updated. Buffers

are updated by removing the oldest measurement B, shifting

all the remaining measurements one position and adding the

new measurements as u1
g = ug(k) and Δx1

g = Δx(k). The

initialization of the buffers is performed by actuating B ≥ 6
times each gripper individually with small actions that ensure

small deformations and full rank of Ug(k = 1).
We use the data buffers to estimate an interaction matrix

Lg ∈ R
3M×6 that defines the dynamics of the system as

Δx = Lgug. (23)

The estimation is:

L̂g = ΔXgU
ᵀ
g

(
UgU

ᵀ
g − γI6

)−1
, (24)

where, for clarity, dependence on k has been omitted. Pa-

rameter γ > 0 (γ very small) is the Tikhonov’s regularisa-

tion parameter and enhances the system’s stability in those

cases in which UgU
ᵀ
g happens to be near-singular. Matrix

L̂g(k) ∈ R
3M×6 allows us to define the control law by using

its left pseudo-inverse L̂+
g ∈ R

6×3M :

ug = −αL̂+
g e, (25)

where α > 0 is the control gain. For good-enough estimations

of L and considering Π(k) in (21) is a time-consistent selector

matrix of static reference points Y, the error dynamics are

obtained by substituting (25) in (23):

Δe = Δx = −αLgL̂
+
g e = −αe, (26)

and thus we conclude local exponential stability.
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Fig. 7. Control scheme that shows how data buffers Ug(k) and

ΔXg(k) are updated when gripper g is actuated. Our proposed

time consistent tracked points X(k) and surface maps Π(k)
are key in the definition of our control law and shape error

e(k).
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Fig. 8. Results of 4 different shape deformation simulations.

For each simulation, the initial, final, and target shapes are

depicted (left to right). Underneath them, a plot shows the

error ‖e‖ (left axis, in red) and the evolution of the error that

would result from applying ZoomOut directly (without our

time consistent approach), i.e. ‖eNTC‖ (right axis, in blue).

B. Simulation results

We performed several tests using the ARAP [35] defor-

mation model to compute the object evolution. In Fig. 8,

we present two simulations with synthetic shapes generated

using Blender (both the initial and the target shapes) and two

simulations that involve shapes obtained from real data: the

duck is obtained from RGB-D images whereas the sea star

is obtained from 3D scanner data. All used meshes contain

around 100 to 500 nodes. In each simulation result we begin

by showing the initial, final and target shape configurations

(first three elements).

The plots in Fig. 8 present the error ‖e‖ evolution (left

axis) along with another error ‖eNTC‖ (right axis, note the

different scale). Error ‖eNTC‖ (non-time-consistent error)

illustrates the evolution of the error according to the ZoomOut

mapping method [27]. That is, the ZoomOut surface maps

(not time-consistent) have been computed on surface data

recorded from the simulations and experiments. Such sim-

ulations and experiments have been performed by feeding

control law (25) with the error e in (22), generated through

our time-consistent mapping method. No shape control has

been performed with error eNTC generated from ZoomOut

maps, as its discontinuities and time inconsistencies do not

allow the computation of deformation Jacobians nor provide a

continuous and consistent error signal. Note that our mapping

comparisons with ZoomOut are not a standard bench-marking

evaluation, as ZoomOut was not created to achieve time

consistency nor to deal with non-synthetic data. Instead, our

goal is to underscore the significance of time consistency

and robustness of surface maps for shape control and to

demonstrate that our method meets these requirements as it

allows for the computation of (24) and provides a proper error

signal for (25). The simulations along with their associated

action plots are shown in the accompanying video.

In the simulations, note how the proposed control ref-

erence ‖e‖ is smooth and continuous (deformable objects

constitute highly under-actuated systems and thus ‖e‖ does

not usually reach zero). On the other hand, error ‖eNTC‖
presents discontinuities and noisy behaviour, leading to the

conclusion that the control reference it represents would not

be suitable for a shape control law. It is interesting to see

how in the first experiment (top left) in Fig. 8, ‖eNTC‖
still manages to stabilise at certain times, however, it remains

around larger error values (∼ 100 [m]) until the shape has

almost converged to the solution. The second simulation (top

right) presents more complex symmetries (axial-wise) and thus

‖eNTC‖ oscillates around a relatively small range of values.

The third simulation in Fig. 8 (bottom left) presents certain

stability of ‖eNTC‖ at the beginning as, at a certain range,

‖eNTC‖ is coincident with ‖e‖ (axes have different scales).

However, large discontinuous oscillations appear during the

rest of the deformation process. The fourth simulation (bottom

right) presented in Fig. 8 begins with a highly symmetric

shape (radial symmetry), however, as the deforming shape gets

closer to the target shape (which presents fewer symmetries),

‖eNTC‖ presents discontinuities in a narrower range of values.

Note that the axis of ‖eNTC‖ contains large values compared

to that of ‖e‖. This is due to the fact that, without the

time-consistent approach, functional maps might be inverting,

flipping or rotating the shape mapping completely between

iterations and thus generating large variations in distances

between matched points in the 3D embedding.

C. Experiments

This section describes five experiments involving the ma-

nipulation of objects with different shapes and materials.

The setup (outlined in Fig. 1) includes two ABB IRB120

industrial robots with pneumatic grippers, a diffused light

source, and an Intel Realsense D415 RGB-D camera. Objects

are retrieved using colour-based segmentation in the CieLAB

colour space; the first homogeneously sampled object points

constitute the points to be tracked in subsequent iterations
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nodes processed Mret (bottom histogram) for each experiment.

The top plot compares the processing frequency distribution

for the non-time-consistent method (blue and dashed contour

boxes) with our method’s (red).
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Fig. 10. Experiment: Mexican hat (see Section IV-C).

(i.e., X(k = 1) = Xret(k = 1)). To ensure that the target

shapes were feasible given the robot’s workspace limitations,

they were pre-acquired by teleoperating the robots. The code

was implemented using Matlab R2022b, and the computer-

to-robot communication was established via TCP/IP protocol.

The experiments were conducted on an Intel(R) Core(TM) i7-

8565U CPU with 1.99 GHz and 16 GB of RAM.

The experiments are illustrated in Figs. 9 to 15, where

Figs. 9 and 15 show comparative analysis and Figs. 10

to 14 presents the experiments showing the same element

distribution. On the top left, three meshes depict the initial,

final, and target shape, along with the surface maps generated

by our proposed method (colour map on the mesh). The same

three meshes are shown in different colours (gray, red, and

blue) and from three different viewpoints (front, side, and top)

in the top right corner. On the bottom left, an image sequence

displays the segmentation of the object on the acquired RGB

images. Nearby the RGB images, the surface maps obtained

using the ZoomOut method (ΠNTC) and our proposed method

(Π) are depicted on the different state meshes as colour maps.

On the right, three plots illustrate the evolution of the control

process. Similar to the error plots in the simulations, the first

plot on the right shows the evolution of the error associated

with our mapping method, i.e., ‖e‖ (left axis, red), and the

error associated with the non-time-consistent maps ΠNTC , i.e.,

‖eNTC‖ (right axis, dashed blue line, note the different scale).

Below the error plot, two action plots, one for the translation

component and the other for the rotation component of the

action, display the evolution of actions ug = (Δtᵀg ,Δrᵀg)
ᵀ for

both robots (x, y and z components of translation and rotations

depicted in red, green, and blue respectively). For a better

understanding of the experiments, these results are presented

in the attached video.

Figure 9 provides information on the processing frequency

and the number of nodes processed in each experiment. Our

method is more complex, which leads to a lower processing

frequency as compared to the non-time-consistent method.

However, it is worth noting that, in our method, all the

processed frames stay over the minimum frequency of 5 [Hz]

(value highlighted with a dotted line in the figure). In those

sequences of Mret ≈ 400 (e.g., the pool noodle, the pillow,

and the foam cut-out), sometimes the processing frequency

rises up to 15 [Hz].

1) Mexican hat (Fig. 10): The flat object used in this

experiment serves as an excellent example of a texture-less

object that requires a 3D analysis method like the one proposed

in this paper. This object lacks visual texture and has limited

geometry defining features due to its radial symmetry, which

makes it unsuitable for methods that rely on extracting 3D

features. In this particular experiment, only the right gripper

is active (the left gripper is fixed, as it is near a singular

robot configuration). Despite these challenges, our proposed

method successfully manipulates the hat towards the desired

target shape. Note how the time inconsistent maps (obtained

from directly applying ZoomOut at each iteration) not only

lead to large variations derived from the symmetries of the

shape but also find difficulties in converging to a map with

proper continuity (see iterations k = 52 and k = 196).
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2) Pool noodle (Fig. 11): This experiment presents a

challenging sensing scenario due to the limitations of the

RGB-D camera. Object points around the visual contour of the

noodle, given its rounded profile, constitute slanted surfaces

that greatly hamper the extraction of 3D information and lead

to noisy information. Furthermore, the thin (elongated) shape

of the noodle results in a high proportion of the object’s

retrieved information being noisy (it has a high contour-to-area

ratio). This is reflected in the histogram in Fig. 9, as it reveals

a non-uniform distribution of the number of retrieved points

Mret characterised by two clusters. Nevertheless, our time-

consistent mapping method performs satisfactorily, allowing

the shape control law to significantly reduce the error. In

contrast, the time-inconsistent mapping method, which deals

with the object’s vertical symmetry and large amounts of noise,

leads to map discontinuities and a highly varying error that

ranges from 10 to almost 60 [m] in some cases.

3) Pillow (Fig. 12): The initial shape of the pillow, as it

presents a certain inclination with respect to the camera, leads

to temporary gaps on both sides of the pillow’s associated

mesh. This poses a challenge for the generation of surface

maps, as there can be large variations of area or mesh shapes

between consecutive iterations. Our time consistent mapping

method handles this difficulty properly. The error ‖e‖ appears

noisier in this experiment due to the smaller range of values

covered by the error plot and the similarity in scale between

the camera noise, mesh variations, and error values.

4) Rectangular foam sheet (Fig. 13): This shape’s symme-

tries (with four 90º corners and straight sides) pose a challenge
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Fig. 14. Experiment: foam cut-out (see Section IV-C).

for surface mapping. The time inconsistent method struggles

to converge to a continuous map, with discontinuities at certain

frames (e.g., k = 96 or k = 203 in the sequence). Even when

producing continuous maps, it oscillates between symmetric

solutions (e.g., k = 22 versus k = 48). In this experiment,

although our mapping method works properly, the proposed

control law does not converge as effectively as in other

experiments. See on the top right meshes that a significant

portion of the final mesh does not overlap with the target mesh.

This is due to the local nature of the Jacobian estimation that,

although being updated, remains a rough estimation of the

object’s complex non-linear deformable behaviour.

5) Foam cut-out (Fig. 14): In this experiment, the challenge

comes from the deformation process rather than the object’s

shape. The shape control problem combines bending, stretch-

ing, and twisting in 3D space. However, both the mapping

method and shape control strategy perform well, resulting

in a shape that closely matches the target shape. This is

demonstrated by the high level of mesh overlap visible in

the three viewpoints on the top right. Using this experiment

as a case study, Fig. 15 illustrates the distribution of the

point-to-point error ‖em‖ =
√
eᵀmem, (m = 1, . . . ,M) for

each time instant k, being em ∈ R
3 the error vector of

the m-th object point. Below, the error distribution generated

by the ZoomOut mapping method (i.e., ‖eNTC,m‖) exhibits

discontinuities and a lack of discernible trends. These char-

acteristics render it impractical for calculating deformation

Jacobians or for implementing shape control laws. On the

bottom plot, we compare the mean values (ē, ēNTC) and

standard deviations (σe, σeNTC) of each method. Although the

ZoomOut method sometimes converges to the desired solution

(the one systematically provided by our method), these cases

are sporadic and isolated.

V. CONCLUSIONS

We presented a method for obtaining time-consistent surface

maps between deforming shapes, such maps consider all the

object’s geometry and allow defining shape control strategies

in real scenarios. We applied the surface mapping method

with our proposed control strategy to several deformation

problems involving different objects, materials and 3D shapes.

The method performed properly both in simulation and in

real experiments. It is worth noting that even when used in

simulations, with ground-truth tracked object points directly

obtained from the simulation mesh, our proposed method still

is relevant for maintaining time-consistent surface maps. Our

time-consistent surface mapping method provides a versatile

solution for the automation of deformable object manipulation,

as it is capable of addressing a vast variety of shape mapping

scenarios. It efficiently processes large numbers of point

correspondences at industry-relevant frequencies. However,

limitations such as unfavourable gripper positioning [36],

low robustness against poor lighting conditions and large

occlusions, or requirements such as faster computation times

still leave room for improvement.

Regarding future work, our proposed time-consistent map-

ping method has the potential to be applied to other existing

control strategies (e.g., [37]). Additionally, the method could

be used to complement and monitor other deformable object

tasks, such as cloth folding (e.g., [38]). Potential future re-

search includes addressing the reliance on connected meshes:

if occlusions separate the object’s visible region into several

regions, the resulting disconnected meshes can lead to incor-

rect basis computations. Other research lines could focus on

making the gripper actuation concurrent rather than sequential,

or using the time-consistent functional maps for analysing the

feasibility of shape control tasks. Another avenue of research

is the exploration of datasets based on synthetic surfaces (e.g.,

videos of simulated deformations). These datasets could serve

as benchmark for other quantitative comparisons of emerging

time-consistent surface mapping methods, not just in terms

of computation cost as discussed in this paper, but also in

accuracy, precision, and other quantitative measures.
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[9] I. Cuiral-Zueco and G. López-Nicolás. Taxonomy of deformable object
shape control. IEEE Robotics and Automation Letters, 9(10):9015–9022,
2024.

[10] J. Zhu, C. Dune, M. Aranda, Y Mezouar, J.M. Corrales, P. Gil, and
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